友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
华夏春秋-第644部分
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!
其实中美在研究聚变核能发电方面的方向与欧洲不一样。欧洲是从基本出发,因为欧洲最缺乏石油,而欧洲的石油需求量并不比中国与美国少多少!到2030年的时候,欧洲的石油消费量已经超过了美国,成为了世界第二大石油消费国。但是欧洲本身的石油非常少,主要依靠进口。而世界最主要的石油产地有4个。中东与海湾地区基本上控制在了中国的手中,新生的里海石油产区也基本上由中国与俄罗斯控制了。俄罗斯生产的石油主要供应独联体国家与中国。拉美地区生产的石油主要供应美国,而西部非洲地区虽然也有较大的石油产量,但是该地区非常不稳定,石油供应并不能让欧洲感到安全!换句话说,欧洲现在进口石油的地区要么是掌握在别人的手里的,要么就无法稳定的提供石油供应。所以,欧洲对新能源的需要最迫切,也是最积极研究与发展聚变核电站的了!
美国与中国不一样,中美两国基本上能够获得稳定的石油供应,而且能够满足国内的需要,而且石油的成本比建造聚变核电站更低,那么中美两国自然就没有开发聚变核电站方面的压力了。但是,中美两国基本上就没有停止过聚变核能和平利用方面的研究,而且还暗中加快了研究速度,因为中美两国都认识到,聚变反应堆在军事上的应用价值远比裂变反应堆要大得多!
聚变反应堆最主要的应用是在海军上,比如核潜艇。因为聚变反应堆的功率密度比裂变反应堆要高出十几到上百倍,而且放射形污染小得多,几乎可以忽略。如果能够成功的解决相关的技术难度,那海军舰艇的动力系统将发生翻天覆地的变化。而在设计战舰时,一直是以先确定动力系统的性能参数,然后依照动力系统的性能,再来确定战舰的具体战斗指标。可以说,动力系统就是战舰的心脏,决定了战舰的基本性能。另外,如果聚变反应堆能够缩小的话,甚至在航空与航天领域都有着广泛的前途,美国就曾经在2025年制订了一个发展以聚变核能为动力的空天飞机计划,但是到2030年时,搞了5年的概念研究,最后确定该计划实在是太超前了一点,被迫放弃了!
导致聚变核反应堆还无法在军事上得到利用的主要原因是聚变反应堆的能量转换器的体积直到2030年之前都无法缩小!因为聚变时的温度远高于裂变的温度,要想将聚变产生的内能转换成电能或者是机械能,这中间的装置就要复杂很多了!而欧洲人建造的聚变电站中,最主要的设备就是能量转换器,而并不是聚变反应堆的核心部分!正是这一方面的技术还远没有成熟,所以在2030年之前,中美两国在聚变核能方面的研究重点就放在了这上面,怎么将能量转换器做得更小,而且安全可靠,效率还要跟上去,这就是整个系统中最为关键的部分了!
在这方面的研究中,中美欧三国的速度基本上是差不多的。到了2030年的时候,三个国家基本上都已经完成了初步的研究工作,将能量转换器缩小到能够在航母上使用的规模了,但是要用到核潜艇上,却还稍微嫌大了一点!
2031年,美国就开始设计新一代航母,而这种航母的核心就是利用一座聚变反应堆提供动力,代替了原先的两座裂变反应堆。虽然反应堆的数量减少了,但是总功率至少增加了15倍,而且体积与两座裂变反应堆相差并不大。按照美国在设计时的性能指标,如果这艘航母全速航行的时候,速度能够达到55节,简直就是载机的气垫船了!当然,随着航母速度的提高,其战术性能也将得到巨大的提升。当然,在整个护航舰队的速度都提上去之前,航母的这种“急速飞奔”的性能并不能完全体现出来,至少在实战中的价值并不是很大。但是,随着聚变反应堆的再一步小型化,如果让所有的巡洋舰与驱逐舰,潜艇都装备上聚变动力系统的话,那整个海军将发生翻天覆地的变化了!
虽然中国也在2030年左右完成了聚变反应堆的小型化工作,但是中国并没有立即开工建造新的航母,毕竟航母是伴随舰队行动的,在舰队的速度都提升上去之前,提升航母的速度也仅仅只能让载机能够携带更多一点武器起飞而已,实际效果与作用都不大!中国首先建造的是具备有独立作战能力的新式战列舰。本来,中国计划在2035年之前建造4艘全新的“兴凯湖”级战列舰,到2030年的时候已经完成了2艘,另外2艘也已经在船台上铺好了龙骨,正在加紧建造。但是2031年,中国修改了后两艘战列舰的建造计划,并且暂时停止了建造工作。到2033年,中国对这两艘战列舰进行了改造,将动力系统换成了全新的聚变动力系统,于2034年重新动工建造。虽然,后来这两艘战列舰也被称为“兴凯湖”级战列舰,但是谁都知道,这应该完全算着全新的一级战列舰了,准确的称呼应该是“青海湖”级战列舰了!而中国建造聚变动力航母是从2040年开始的,因为在此时,聚变反应堆的体积已经再一步缩小,能够满足装备中型舰艇的需要了。而在中国开工建造第一级聚变动力航母的同时,也开始建造聚变动力巡洋舰,驱逐舰以及潜艇。而最后,前面6艘没有使用聚变动力的战列舰也进入船厂进行全面改装,换上了改进的聚变反应堆,并且对战舰上的设备进行了改进,这也是“太湖”级战列舰能够服役50多年,直到2060年之后才因为舰龄太老而退役的主要原因了!
欧洲方面的发展路线其实与中国差不多,只是欧洲人瞄准的第一个目标是聚变动力潜艇,或者说是第二代核潜艇!因为欧洲在潜艇方面的实力确实比中美要差多了,而在数次战争之中,中国与美国的核潜艇都有着非常突出的表现,欧洲深知,如果与中美海军交战的话,他们将在潜艇方面吃大亏,甚至输掉整场海战!而发展一种新型的核潜艇是欧洲海军建设重点中的重点!而且,欧洲在聚变反应堆小型化方面的进展是最快的,到2035年的时候,就已经完成了能够在潜艇上使用的聚变反应堆的设计工作,并且开发出了磁流体推进技术,解决了潜艇高速航行时的噪音问题。而随着这些技术难题的解决,欧洲于2036年开始建造第一种以聚变反应堆提供动力的核潜艇。但是建造工作在2038刚完成了潜艇主体建造工作时停止,因为此时欧洲研制的聚变反应堆出现了严重的问题,一个在设计时没有考虑到的问题暴露了出来,严重影响到了反应堆的安全性!而等到欧洲解决了相应的技术难题时,已经到了2040年,中国与美国也开始建造自己的聚变动力核潜艇了!
在军用聚变反应堆的能量转换器方面,中美欧三个国家采用了三个不同的发展道路。因为聚变反应堆并不同于裂变反应堆,技术跨度太大,几乎所有问题都是崭新的,没有什么好借鉴的地方,都需要从头研制。但是,在一些地方,比如2级回路方面又需要使用到裂变反应堆的一些成熟技术。而正是三个国家在裂变反应堆方面技术水平以及研究专长方面的不同,最终造成了在聚变反应堆的开发方面出现了很大的差别!
美国在裂变反应堆的技术方面最为成熟,而且技术也最先进,特别是在压水堆方面的技术非常成熟,直到“弗罗里达”级核潜艇,美国都是使用的压水堆,并且有效的控制了潜艇的噪音,可见美国在这方面的技术有多成熟与先进。所以,在研究聚变反应堆的时候,美国首先想到的就是利用自己成熟技术的优势,用水做能源转换介质。所以,美国还是走的压水堆当面的路线,而且因为技术成熟,走得还比较顺利,只是在一回路的能源转换方面遇到了一点难度,但是很快也得到了解决!
中国在发展核潜艇的时候,从095级采用的是气冷堆技术,即以二氧化碳或者氦气作为第一回路的能源转换介质。因为这一技术在2010年之前仍然没有成熟,所以中国在这条研究道路上遇到了很大的麻烦。气冷堆的安全性以及功率转换效率要比压水堆好很多,但是同样存在体积过大,功率密度(这与转换效率完全不是一回事)低的问题。到2015年的时候,中国使用在097级核潜艇上的气冷堆的技术才得到成熟,成功的缩小了反应堆的体积。所以,中国在研制聚变反应堆的时候,仍然采用了这一技术。因为安全性更好,而且功率转换效率高,所以中国在聚变反应堆方面的研究速度是后来居上,特别是在解决了反应堆体积的问题之后,中国发现自己走的这条路完全选对了!
欧洲最初发展的核潜艇基本上都采用了压水堆技术。但是后来美国与欧洲关系破裂,禁止向欧洲提供任何核反应堆方面的技术。而法国本身在研制反应堆方面的技术就比不上美国。而在后来持续了20多年的研究中,欧洲通过在陆地上使用聚变反应堆发电的时候发现,其实液态金属才是聚变反应堆的最好能量转换介质,并且将研究重点放在了这上面。但是,这一反应堆技术最大的问题是一回路的抗腐蚀与高温下的工作稳定性,以及在二回路中的预热问题。虽然这些问题看起来很容易解决,但是实际上并非如此。所以欧洲在这一方面起步最早,但是却最后取得发展成功!
从三种聚变核动力方案中可以看得出来,美国的技术最为成熟,但是也是效率最低,发展前途最渺茫的一种,因为水介质在聚变反映堆芯存在严重的安全问题,甚至会引起反应堆停机的恶性事故!中国的发展方案虽然并不是很成熟,但是在短时间内的发展潜力最大,能够满足多方面的需求,而且安全性最高!而欧洲的发展方案的发展潜力最大,只要解决了材料方面的问题,不但能够达到安全方面的目的,甚至可以直接将内能转换为电能,让潜艇变得更安静,持续发展下去的优势是中美方案所无法比拟的!当然,三种方案都是在2040年左右才成熟,而第一艘聚变动力核潜艇,即美国的“鹦鹉螺”号直到2043年才服役,而中国与欧洲的相应核潜艇也要到2045年左右才服役。可以说,这些技术上的进步,让潜艇成为了海战中最主要的进攻武器!
第五次中东战争带来的能源危机,是迫使中美开始研究民用聚变电站的主要动力。但是两国此时都将重点放到了聚变核能的军事用途上。直到2035年,聚变电站的成本控制技术得到了突破,中美才上马民用聚变核电站,但是建造进度并不快,因为成本收益率并不高。而直到2040年,中美才全面启动建造聚变核电站的计划,将民用聚变电站的发展放到了最重要的位置上,逐步取代化石燃料发电站的地位。到2040年的时候,全世界电能中,聚变电站的发电量只占到了25%左右,主要是在欧洲地区得到了广泛的应用。但是到了2050年,这一比例就达到了50%,成为了人类社会的主要能源!
第五次中东战争中爆发的全球性最广泛,也是最严重的这场能源危机所带来的影响绝对不仅仅是促进了聚变核能的应用与推广,而是在更大的层面上让世界各国更疯狂的寻找石油资源,同时提高了石油开采的技术,将目光瞄准了深海中的石油资源。而在这方面走得最快的自然是日本了!
2025年的时候,日本就已经发现在小莅原群岛,鸟岛以及南鸟岛附近海域发现了深海石油储备资源。因为这一附近的海水深度都在2000米以上,而要在这么深的海底开采石油,当时的技术根本就达不到需要,也就说不上真正的商业开采了!
到了2028年,日本在深海石油开采技术方面取得了巨大的突破,主要是解决了材料方面的问题。虽然此时技术仍然不是很成熟,成本并没有有效的控制下来。但是,日本此时已经很难从世界主要的产油地进口石油了,而进口的石油无法满足国内的需求,已经成为了日本经济与军事发展的主要瓶颈。在2027年,日本的战斗机飞行员每年只能勉强达到200小时的飞行训练时间,这比中国空军的550小时,美国空军的500小时都低了很多,那么素质自然就差了很多。而且海军战舰的出海值勤行动更受到了严重的限制。因为日本被限制不能发展核武器,而且根本就无法从外界进口到铀原料,自然也就无法发展核动力战舰了。而聚变反应堆技术还远没有成熟,加上连欧洲都对日本进行了这方面的技术封锁。所以,日本在艰难的发展自己的聚变反应堆技术的同时,将目光瞄准了那些深海中的石油资源!
2028年年底,日本就在鸟岛附近开始建设第一座深海石油开采平台了。到2029年年中建造结束的时候,虽然成本高达25亿欧元,导致开采出来的石油甚至比国际市场上的石油还要贵很多,达到了每桶120欧元左右,但是日本人还是觉得自己胜利了,因为这是日本彻底解决自己贫油的开始,只要能够大规模的生产,就能够降低成本,同时提高产量,满足国内对石油的需求!
到2035年的时候,日本已经在鸟岛,小莅原群岛,南鸟岛建造了至少20座深海石油开采平台,日产油量达到了2100万桶左右,满足了日本国内石油需求的85%,基本上解决了日本油荒的问题。但是,日本将自己的石油安全战略放到了大洋上,这就必须要拥有一直非常强大的海军来保护海上的石油资源。而有了丰富的石油资源之后,日本就有能力发展一支强大的海军了!这种相互的作用,让日本海军的发展速度非常迅速,到2035年的时候,日本海军基本上已经能够对抗中国的太平洋舰队了!
当然,并不是只有日本一个国家在开采深海石油资源。紧随日本之后,欧洲也将目光落到了大西洋上的深海石油身上。虽然欧洲在聚变核能的和平利用方面走在了世界的前列,但是电能并不能完全取代化石能源,因为蓄电池的技术进步非常缓慢,电能的应用存在着巨大的麻烦。比如在重型战舰,坦克,重型装甲车辆,飞机上,电能就无法发挥太大的作用,仍然需要由化石能源提供动力!而且在化工上,煤炭并没有能够取代石油的地位,因为用煤炭做原料的化工技术还存在着成本上的问题。因此,石油仍然是不可替代的战略资源,特别是在军事应用上,石油的地位直到2050年之前,一直没有受到动摇!
欧洲在开采深海石油方面与日本进行了广泛的合作,2030年的时候,日本已经在开采深海石油方面有了成熟的技术,所以从这一年开始,欧洲也逐步开始在大西洋上开采深海石油。而在欧洲的带动下,中国与美国也在2035年之前开始将石油开采重点转移到了深海石油资源上。虽然,这在很大的程度上缓解了人类社会的能源危机,特别是在聚变核电还不成熟的这个青黄不接的时候,石油的多产区性在很大的程度上推进了人类社会的发展,但是以此引来的海洋危机却非常全面的暴露出了人类本身的贪婪性!
早就有人说过,21世纪是海洋的世纪,谁控制了海洋,谁就控制了世界。但是,直到深海石油以及别的资源被开发出来之后,海洋的重要性才彻底的体现了出来。当然,关于海洋资源的重要性,在下一章有重点介绍。而这里,仅仅是因为深海石油资源的发掘,就在全世界范围之内引起了一场海军军备大赛。从2030年开始,几乎所有国家都在重点发展海军,海军几乎成了这个时代最常见的词汇!
从2030年起,一场规模浩大的海军造舰计划在中美欧日俄这些大国中全面展开了!按照中国在这一年制订的海军发展计划,中国在2040年之前,将再
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!