友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
河图小说网 返回本书目录 加入书签 我的书架 我的书签 TXT全本下载 『收藏到我的浏览器』

女士品茶-第1部分

快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!


作者: 萨尔斯伯格 
出版社: 中国统计出版社
副标题: 20世纪统计怎样变革了科学
原作名: The Lady Tasting Tea
译者: 邱东等 
出版年: 20041101
页数: 332
定价: 29。80元
装帧: 平装
ISBN: 9787503744891

简介:

《女士品茶》全名《The Lady Tasting Tea——How Statistics Revolutionized Science in the Twentieth Century 》《女士品茶——20世纪统计学怎样变革了科学》。是美国统计学家萨尔斯伯格以“女士品茶问题”为切入点所著的一部关于统计学历史与变革的书,以一种全新的视角带领读者进入统计学的世界,体会统计学带给哲学观、宇宙观的变革。

作者序
进入19世纪时,科学界奉行着一种固化的哲学观,即机械式宇宙观(clockwork universe)。这种哲学观认为,为数不多的几个数学公式,像牛顿的运动定律(Newton’s laws of motion)和玻意耳的气体定律(Boyle’s laws of gases),可以用来描述现实世界的一切,并能预测未来即将发生的事件。而对这种预测,所需要的不过是一套完整的公式,以及一组具有足够精确度的相关数据。然而,对于一般大众来说,整整花了40年时间,他们的思想才跟上这种科学观念。
这种思想上的落差,典型地体现在19世纪早年拿破仑皇帝(Emperor Napoléon)与皮埃尔?西蒙?拉普拉斯(Pierre Simon Laplace)的一次对话中。拉普拉斯写了一本历史性的权威著作,论述如何根据地球上少数观察数据来计算行星和彗星的未来位置。据说拿破仑问道:“拉普拉斯先生,我发现你的论述中没有提到上帝啊!”拉普拉斯的回答则是:“我不需要这个假设条件。”
机械式宇宙观认为,宇宙如同一个庞大的时钟机器,所有的物体都按照一定的规律运动,宇宙永续运转而不需要神的介入;所有将来发生的事件都决定于过去的事件。许多人对这种无神论的思想感到恐慌,从某种意义上说,19世纪浪漫主义运动的兴起,正是对这种精确应用推理的冷冰冰的哲学观的回应。然而,19世纪40年代出现了对新科学的证明,这叫一般人难以想象:牛顿的数学定律被用来预测另一颗行星的存在,而海王星(the planet Neptune)正是在这些定律所预测的位置被发现的。于是,几乎所有对机械宇宙观的反抗都被粉碎了,这一哲学立场很快成为大众文化的基本部分。
不过,就算拉普拉斯在他的公式中不需要上帝,他还是需要一种被他称为误差函数(error function)的东西。从地球上对行星和彗星的观察,与用公式所预测的位置并不绝对吻合,拉普拉斯和他的科学家同伴将这归结于观察中的误差,有时是由于地球大气层中的扰动,有时则是人为的。拉普拉斯把所有这些误差都放在一个附加项(误差函数)里,从而将之纳入他的数据描述。这个误差函数吸收了所有的误差,剩下的只是用来预测宇宙星体实际位置的绝对运动定律。当时科学家相信,随着越来越精确的测试,对误差函数的需求将逐渐消失。由于有误差函数来表示预测值与观察值之间的微小差异,19世纪早期的科学可以说是受到了哲学上决定论(determinism)的掌控,即相信所发生的任何事情都预先地决定于两点:(1)宇宙的初始条件;(2)描绘其运动的数学公式。
到了19世纪末,误差并没有消失,反倒是增加了。当测试越来越精确,误差也越来越多。机械宇宙观处于动摇之中,试图发现生物学定律和社会学定律的努力也失败了。在物理和化学等传统科学中,牛顿和拉普拉斯所用的那些定律,逐渐地被证明只是粗略的逼近。这样,科学便渐渐开始在新的范式(paradigm)下运作,这新范式就是现实世界的统计模型。到20世纪末期,几乎所有科学都转而运用统计模型了。
大众文化还是没有跟上这种科学革命,尽管一些含混的观念和表述,像相关(correlation)、胜率(odds)和风险(risk)等等,已经渗入了大众的词汇,并且多数人意识到了不确定性问题,这是与诸如医学和经济学等学科领域相联系的。但就已经发生的哲学观的深层转变而言,学界之外没有人能够对此有什么理解。这些统计模型是什么?它们是怎么来的?在现实生活中它们意味着什么?它们是现实的真实描述吗?本书正是试图来回答这些问题,其中我们也想介绍一些先生和女士的生平故事,这些人曾涉身于这场革命之中。
在处理这些问题时,必须把三个数学概念区分开:随机(randomness)、概率(probability)和统计(statistics)。对大多数人而言,随机只是不可预测性(unpredictability)的另一个说法。犹太教法典(Talmud)中的一则格言,传达了这种通常的看法:“不应该去探寻宝藏,因为宝藏的发现是随机的;按照定义,没有人能够寻找只会被随机发现的东西。”但是,对现代科学家来说,随机性有许多不同的类型。概率分布(probability distribution,这将在第2章中讨论)的概念允许我们对随机性加以限制,并赋予我们有限的能力去预测未来的随机事件。因此,对现代科学家而言,随机事件并不是杂乱的、不可预期的和不可预测的,它们有一个可以用数学来描述的结构。
概率是一个非常古老概念的现代用语,它曾出现在亚里士多德(Aristotle)的著作中。这位先哲声称:“不可能事件将会发生,这正是概率的特性。”起初,概率只是涉及到个人对什么事件即将发生的预测,在17和18世纪,一批数学家,其中包括贝努里(Bernoullis)父子、费尔马(Fermat)、棣莫弗(de Moivre)、帕斯卡(Pascal)都在以机会博弈(games of chance)为起点去研究概率的数学理论。他们发明一些非常高级的方法,用来计算等可能事件,棣莫弗设法在这些技术中加进微积分的方法,贝努里则可以领悟出非常基础的定理,叫大数定律(Laws of large numbers)。到了19世纪末期,数理概率主要由一些非常高级的技巧构成,但还缺少坚实的理论基础。
尽管不够完善,还是可以证明概率理论对发展统计分布(statistics distribution)观念的作用。当我们考虑一个特殊的科学问题时,就会产生一个统计分布。例如,在1971年,哈佛公共卫生学院所做的一项研究发表在英国的医学期刊《柳叶刀》(Lancet)上,这项研究旨在检验喝咖啡是否与下泌尿道癌有关。研究的报告以一级病人为对象。其中一些人患有下泌尿道癌,另一些人则患有其它疾病。报告的作者还搜集了这组病人的其它资料,如年龄、性别和家族的癌症病史等。结果证明,并不是每个喝咖啡的人都会得泌尿道癌,也不是每个得泌尿道癌的人都圆角咖啡,所以存在着与他们的假设相矛盾的事件。然而,25%的此类癌症患者习惯每天喝4杯以上咖啡,只有10%的非癌症患者是这种咖啡嗜好者,因而,似乎有一些证据支持这种假设。
这种资料的搜集给研究者提供了一个统计的分布。运用数理概率的工具,他们为这个分布建造了一个理论公式,称之为概率分布函数(probability distribution function),或简称分布函数(distribution function),以此来检验所研究的问题。它与拉普拉斯的误差函数相似,但却复杂许多。运用概率论来建造理论分布函数,而这个函数用来描述从未来数据中所能得到的预期结果,这些数据是以随机方式从同一总体的人群中提取的。
我不想使本书成为一本关于概率和概率论的书,那是抽象的数据概念。本书涉及的一些概率定理在科学问题上的应用,涉及统计分布和分布函数的世界。概率论本身不足以说明统计方法,有时甚至会出现这样的情形:科学中所用的统计方法违背了概率的定理。读者会发现本书中概率时隐时现,需要时被用到,不需要时则被忽略。
由于现实世界的统计模型都是数学化的,充分理解它们只能用数学公式或符号的方式。本书是一种野心不那么大的尝试,我打算描述发生在20世纪科学界的统计革命,而手法是通过介绍一些参加过这场革命的人物(其中不少人至今还健在)。我只是涉猎他们创造性的工作,试图让读者从中体会他们的个别发现是如何适应整个统计革命的。
仅就本书而言,读者并不会学到对科学数据进行统计分析所需要的足够知识,那需要几年的循序渐进的学习。但我希望读者看过本书后,能够对科学的统计观所代表的基本哲学的重大变革有所理解。那么,不懂数学的人要理解这场科学革命,应该从哪里开始呢?我以为,一个不错的选择是与女士一道品茶。

目录
第1章 女士品茶
第2章 偏斜分布
第3章 可爱的戈塞特先生
第4章 在“垃圾堆”中寻觅
第5章 收成变动研究
第6章 “百年不遇的洪水”
第7章 费歇尔获胜
第8章 致命的剂量
第9章 钟形曲线
第10章 拟合优度检验
第11章 假设检验
第12章 置信诡计
第13章 贝叶斯异论
第14章 数学界的莫扎特
第15章 “小人物”之见解
第16章 非参数方法
第17章 当部分优于总体时
第18章 吸烟会致癌吗?
第19章 如果您需要最佳人选
第20章 朴实的德克萨斯农家小伙
第21章 家庭中的天才
第22章 统计界的毕加索
第23章 处理有瑕疵的数据
第24章 重塑产业的人
第25章 来自黑衣女士的忠告
第26章 鞅的发展
第27章 意向治疗法
第28章 电脑随心所欲
第29章 “泥菩萨”

附:作者后记
大事年表
参考书目
Chapter 01 The Lady Tasting Tea
Chapter 02 The Skew Distribution
Chapter 03 That Dear Mr。 Gosset
Chapter 04 Raking Over the Muck Heap
Chapter 05 “Studies in Crop Variation”
Chapter 06 “The HundredYear Flood”
Chapter 07 Fisher Triumphant
Chapter 08 The Dose That Kills
Chapter 09 The BellShaped Curve
Chapter 10 Testing the Goodness of Fit
Chapter 11 Hypothesis Testing
Chapter 12 The Confidence Trick
Chapter 13 The Bayesian Heresy
Chapter 14 The Mozart of Mathematics
Chapter 15 The Worm’sEye View
Chapter 16 Doing Away With Parameters
Chapter 17 When Part is Better than the Whole
Chapter 18 Does Smoking Cause Cancer
Chapter 19 If You Want the Best Person
Chapter 20 Just A Plain Texas Farm Boy
Chapter 21 A Genius in the Family
Chapter 22 The Pieasso of Statistics
Chapter 23 Dealing with Contamination
Chapter 24 The Man Who Remade Industry
Chapter 25 Advice From the Lady in Black
Chapter 26 The March of the Martingales
Chapter 27 The Intent to Treat
Chapter 28 The puter Turns Upon Itself
Chapter 29 The Idol With Feet of Clay

第1章 女士品茶
那是20世纪20年代后期,在英国剑桥一个夏日的午后,一群大学的绅士和他们的夫人们,还有来访者,正围坐在户外的桌旁,享用着下午茶。在品茶过程中,一位女士坚称:把茶加进奶里,或把奶加进茶里,不同的做法,会使茶的味道品起来不同。在场的一帮科学精英们,对这位女士的“胡言乱语”嗤之以鼻。这怎么可能呢?他们不能想象,仅仅因为加茶加奶的先后顺序不同,茶就会发生不同的化学反应。然而,在座的一个身材矮小、戴着厚眼镜、下巴上蓄着的短尖髯开始变灰的先生,却不这么看,他对这个问题很感兴趣。
他兴奋地说道:“让我们来检验这个命题吧!”并开始策划一个实验。在实验中,坚持茶有不同味道的那位女士被奉上一连串的已经调制好的茶,其中,有的是先加茶后加奶制成的,有的则是先加奶后加茶制成的。
写到这里,我可以想象,部分读者会对这种实验不以为意,认为它不过是一帮精英们于夏日午后的一个小消遣。他们会说:“这位夫人能不能区分两种不同的注茶方式,又有什么大不了的呢?这个问题并没有什么科学价值,这些大人物更应该把他们的天才用在对人类有所裨益的事情上去。”
不幸的是,不管外行对科学及其重要性怎么想象,从我个人的经验来看,大多数科学家之所以从事科研活动,只是因为他们对结果感兴趣,或者能够在工作中得到理性的刺激。好的科学家很少会想到工作的最终重要性,剑桥那个晴朗夏日的午后也是这种情景。那位夫人也许能、也许不能正确地品出不同的茶来,但这无关紧要,因为,实验的真正乐趣,在于找到一种判断该女士是对还是错的方案来。于是,在蓄着胡须先生的指导下,大家开始讨论应该如何进行实验判断。
接下来,在场的许多人都热心地加入到实验中来。几分钟内,他们在那位女士看不见的地方调制出不同类型的茶来。最后,在决战来临的气氛中,蓄短胡须的先生为那位先生为那位女士奉上第一杯茶,女士品了一小会儿,然后断言这一杯是先倒的茶后加的奶。 这位先生不加评论地记下了女士的说法,然后,又奉上了第二杯……

科学的合作性质
这个故事是我在20世纪60年代后期,从一个当时在场的先生那里听到的。这位先生就是休?史密斯(Hugh Smith),但他都是以H?费尔菲尔德?史密斯(H。 Fairfield Smith)的名义发表科研论文。我认识他的时候,他在位于斯托尔斯(Storrs)的康涅狄格大学(the University of Connecticut)任统计学教授,而我则是两年以前在这个大学拿到了统计学博士学位。在宾州大学(the University of Pennsylvania)教了一阵子书后,我加入到了辉瑞公司(Pfizer Inc。)的临床研究部门。这是一家大型制药公司,它的研究园区坐落在格罗顿(Groton);离斯托尔斯大约一个小时的车程。当时,我是那里唯一的统计学家。在辉瑞期间,我要处理许多疑难的数学问题,还要负责给他们讲解这些问题,并告诉他们,对这些问题,我个人的结论是什么。
在辉瑞工作期间,我发现,科研工作几乎不能独立完成,通常需要不同智慧的结合。因为,这些研究太容易犯错误了。当我提出一个数学公式作为解决问题的工具时,这个模型有时可能并不适合;或者我就所处理情况而引入的假设并不真实;或者我发现的“解”是公式中的失误部分推导出来的;甚至我可能在演算中出了错。
无论何时,我去斯托尔斯的大学拜访,与史密斯教授探讨问题,或者,与辉瑞的化学专家、药理专家坐在一起讨论,我提出的问题都会受到欢迎,他们对这种讨论充满兴趣和热情。对大多数科学家来说,工作中令他们最感兴趣的,就是解决问题时那种兴奋感。因此,在检验并试图理解问题时,他们期盼着与他人交流。

实验的设计
剑桥那个夏日午后的情形正是如此,那个留着短胡须的先生就是罗纳德?艾尔默?费歇尔(Ronald Aylmer Fisher),当时他只有三四十岁。后来,他被授予爵士头衔。1935年,他写了一本叫《实验设计》(The Design of Experiments)的书,书的第2章就描述了他的“女士品茶”实验。在书中,他把女士
返回目录 下一页 回到顶部 1 1
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!