友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
河图小说网 返回本书目录 加入书签 我的书架 我的书签 TXT全本下载 『收藏到我的浏览器』

九章算术-第7部分

快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!


袤而半之,高乘之,即二堑堵;并之,以为甍积也。〕

刍童、曲池、盘池、冥谷皆同术。

术曰:倍上袤,下袤从之;亦倍下袤,上袤从之;各以其广乘之,并,以高

若深乘之,皆六而一。

〔按:此术假令刍童上广一尺,袤二尺;下广三尺,袤四尺;高一尺。其用

棋也,中央立方二,四面堑堵六,四角阳马四。倍下袤为八,上袤从之,为十,

以高、广乘之,得积三十尺。是为得中央立方各三,两端堑堵各四,两旁堑堵各

六,四角阳马亦各六。复倍上袤,下袤从之,为八,以高、广乘之,得积八尺。

是为得中央立方亦各三,两端堑堵各二。并两旁,三品棋皆一而为六。故六而一,

即得。为术又可令上下广袤差相乘,以高乘之,三而一,亦四阳马;上下广袤

互相乘,并,而半之,以高乘之,即四面六堑堵与二立方;并之,为刍童积。又

可令上下广袤互相乘而半之,上下广袤又各自乘,并,以高乘之,三而一,即得

也。〕

其曲池者,并上中、外周而半之,以为上袤;亦并下中、外周而半之,以为

下袤。

〔此池环而不通匝,形如盘蛇,而曲之。亦云周者,谓如委谷依垣之周耳。

引而伸之,周为袤。求袤之意,环田也。〕

今有刍童,下广二丈,袤三丈;上广三丈,袤四丈;高三丈。问积几何?答

曰:二万六千五百尺。

今有曲池,上中周二丈,外周四丈,广一丈;下中周一丈四尺,外周二丈四

尺,广五尺;深一丈。问积几何?答曰:一千八百八十三尺三寸少半寸。

今有盘池,上广六丈,袤八丈;下广四丈,袤六丈,深二丈。问积几何?答

曰:七万六百六十六尺太半尺。

负土往来七十步,其二十步上下棚除,棚除二当平道五;踟蹰之间十加一;

载输之间三十步,定一返一百四十步。土笼积一尺六寸。秋程人功行五十九里半。

问人到积尺及用徒各几何?答曰:人到二百四尺。用徒三百四十六人一百五十三

分人之六十二。

术曰:以一笼积尺乘程行步数,为实。往来上下棚除二当平道五。

〔棚,阁;除,斜道;有上下之难,故使二当五也。〕

置定往来步数,十加一,及载输之间三十步,以为法。除之,所得即一人所

到尺。以所到约积尺,即用徒人数。

〔按:此术棚,阁;除,斜道;有上下之难,故使二当五。置定往来步数,

十加一,及载输之间三十步,是为往来一返凡用一百四十步。于今有术为所有率,

笼积一尺六寸为所求率,程行五十九里半为所有数,而今有之,即所到尺数。以

所到约积尺,即用徒人数者,此一人之积除其众积尺,故得用徒人数。为术又

可令往来一返所用之步约程行为返数,乘笼积为一人所到。以此术与今有术相

反覆,则乘除之或先后,意各有所在而同归耳。〕

今有冥谷,上广二丈,袤七丈;下广八尺,袤四丈;深六丈五尺。问积几何?

答曰:五万二千尺。

载土往来二百步,载输之间一里。程行五十八里;六人共车,车载三十四尺

七寸。问人到积尺及用徒各几何?答曰:人到二百一尺五十分尺之十三。用徒二

百五十八人一万六十三分人之三千七百四十六。

术曰:以一车积尺乘程行步数,为实。置今往来步数,加载输之间一里,以

车六人乘之,为法。除之,所得即一人所到尺。以所到约积尺,即用徒人数。

〔按:此术今有之义。以载输及往来并得五百步,为所有率,车载三十四尺

七寸为所求率,程行五十八里,通之为步,为所有数,而今有之,所得即一车所

到。欲得人到者,当以六人除之,即得。术有分,故亦更令乘法而并除者,亦用

以车尺数以为一人到土率,六人乘五百步为行率也。又亦可五百步为行率,令六

人约车积尺数为一人到土率,以负土术入之。入之者,亦可求返数也。要取其会

通而已。术恐有分,故令乘法而并除。以所到约积尺,即用徒人数者,以一人所

到积尺除其众积,故得用徒人数也。〕

今有委粟平地,下周一十二丈,高二丈。问积及为粟几何?答曰:积八千尺。

〔于徽术,当积七千六百四十三尺一百五十七分尺之四十九。

淳风等按:依密率,为积七千六百三十六尺十一分尺之四。〕

为粟二千九百六十二斛二十七分斛之二十六。

〔于徽术,当粟二千八百三十斛一千四百一十三分斛之一千二百一十。

淳风等按:依密率,为粟二千八百二十八斛九十九分斛之二十八。〕

今有委菽依垣,下周三丈,高七尺。问积及为菽各几何?答曰:积三百五十

尺。

〔依徽术,当积三百三十四尺四百七十一分尺之一百八十六。

淳风等按:依密率,为积三百三十四尺十一分尺之一。〕

为菽一百四十四斛二百四十三分斛之八。

〔依徽术,当菽一百三十七斛一万二千七百一十七分斛之七千七百七十一。

淳风等按:依密率,为菽一百三十七斛八百九十一分斛之四百三十三。〕

今有委米依垣内角,下周八尺,高五尺。问积及为米各几何?答曰:积三十

五尺九分尺之五。

〔于徽术,当积三十三尺四百七十一分尺之四百五十七。

淳风等按:依密率,当积三十三尺三十三分尺之三十一。〕

为米二十一斛七百二十九分斛之六百九十一。

〔于徽术,当米二十斛三万八千一百五十一分斛之三万六千九百八十。

淳风等按:依密率,为米二十斛二千六百七十三分斛之二千五百四十。〕

委粟术曰:下周自乘,以高乘之,三十六而一。

〔此犹圆锥也。于徽术,亦当下周自乘,以高乘之,又以二十五乘之,九百

四十二而一也。〕

其依垣者,

〔居圆锥之半也。〕

十八而一。

〔于徽术,当令此下周自乘,以高乘之,又以二十五乘之,四百七十一而一。

依垣之周,半于全周。其自乘之幂居全周自乘之幂四分之一,故半全周之法以为

法也。〕

其依垣内角者,

〔角,隅也,居圆锥四分之一也。〕

九而一。

〔于徽术,当令此下周自乘,而倍之,以高乘之,又以二十五乘之,四百七

十一而一。依隅之周,半于依垣。其自乘之幂居依垣自乘之幂四分之一,当半依

垣之法以为法。法不可半,故倍其实。又此术亦用周三径一之率。假令以三除周,

得径;若不尽,通分内子,即为径之积分。令自乘,以高乘之,为三方锥之积分。

母自相乘得九,为法,又当三而一,得方锥之积。从方锥中求圆锥之积,亦犹方

幂求圆幂。乃当三乘之,四而一,得圆锥之积。前求方锥积,乃以三而一;今求

圆锥之积,复合三乘之。二母既同,故相准折。惟以四乘分母九,得三十六而连

除,圆锥之积。其圆锥之积与平地聚粟同,故三十六而一。

淳风等按:依密率,以七乘之,其平地者,二百六十四而一;依垣者,一百

三十二而一;依隅者,六十六而一也。〕

程粟一斛积二尺七寸;

〔二尺七寸者,谓方一尺,深二尺七寸,凡积二千七百寸。〕

其米一斛积一尺六寸五分寸之一;

〔谓积一千六百二十寸。〕

其菽、荅、麻、麦一斛皆二尺四寸十分寸之三。

〔谓积二千四百三十寸。此为以精粗为率,而不等其概也。粟率五,米率三,

故米一斛于粟一斛,五分之三;菽、荅、麻、麦亦如本率云。故谓此三量器为概,

而皆不合于今斛。当今大司农斛,圆径一尺三寸五分五厘,正深一尺,于徽术,

为积一千四百四十一寸,排成余分,又有十分寸之三。王莽铜斛于今尺为深九寸

五分五厘,径一尺三寸六分八厘七毫。以徽术计之,于今斛为容九斗七升四合有

奇。《周官·考工记》:朅氏为量,深一尺,内方一尺而圆外,其实一釜。于徽

术,此圆积一千五百七十寸。《左氏传》曰:“齐旧四量:豆、区、釜、钟。四

升曰豆,各自其四,以登于釜。釜十则钟。”钟六斛四斗。釜六斗四升,方一尺,

深一尺,其积一千寸。若此方积容六斗四升,则通外圆积成旁,容十斗四合一龠

五分龠之三也。以数相乘之,则斛之制:方一尺而圆其外,庣旁一厘七毫,幂一

百五十六寸四分寸之一,深一尺,积一千五百六十二寸半,容十斗。王莽铜斛与

《汉书·律历志》所论斛同。〕

今有仓,广三丈,袤四丈五尺,容粟一万斛。问高几何?答曰:二丈。

术曰:置粟一万斛积尺为实。广、袤相乘为法。实如法而一,得高尺。

〔以广袤之幂除积,故得高。按:此术本以广袤相乘,以高乘之,得此积。

今还元,置此广袤相乘为法,除之,故得高也。〕

今有圆囷,

〔圆囷,廪也,亦云圆囤也。〕

高一丈三尺三寸少半寸,容米二千斛。问周几何?答曰:五丈四尺。

〔于徽术,当周五丈五尺二寸二十分寸之九。

淳风等按:依密率,为周五丈五尺一百分尺之二十七。〕

术曰:置米积尺,

〔此积犹圆堡昪之积。〕

以十二乘之,令高而一。所得,开方除之,即周。

〔于徽术,当置米积尺,以三百一十四乘之,为实。二十五乘囷高为法。所

得,开方除之,即周也。此亦据见幂以求周,失之于微少也。晋武库中有汉时王

莽所作铜斛,其篆书字题斛旁云:律嘉量斛,方一尺而圆其外,庣旁九厘五毫,

幂一百六十二寸;深一尺,积一千六百二十寸,容十斗。及斛底云:律嘉量斗,

方尺而圆其外,庣旁九厘五毫,幂一尺六寸二分。深一寸,积一百六十二寸,容

一斗。合、龠皆有文字。升居斛旁,合、龠在斛耳上。后有赞文,与今律历志同,

亦魏晋所常用。今粗疏王莽铜斛文字、尺、寸、分数,然不尽得升、合、勺之文

字。按:此术本周自相乘,以高乘之,十二而一,得此积。今还元,置此积,以

十二乘之,令高而一,即复本周自乘之数。凡物自乘,开方除之,复其本数。故

开方除之,即得也。

淳风等按:依密率,以八十八乘之,为实。七乘囷高为法。实如法而一。开

方除之,即周也。〕

卷六

○均输(以御远近劳费)

今有均输粟,甲县一万户,行道八日;乙县九千五百户,行道十日;丙县一

万二千三百五十户,行道十三日;丁县一万二千二百户,行道二十日,各到输所。

凡四县赋当输二十五万斛,用车一万乘。欲以道里远近、户数多少衰出之,问粟、

车各几何?答曰:甲县粟八万三千一百斛,车三千三百二十四乘。乙县粟六万三

千一百七十五斛,车二千五百二十七乘。丙县粟六万三千一百七十五斛,车二千

五百二十七乘。丁县粟四万五百五十斛,车一千六百二十二乘。

术曰:令县户数各如其本行道日数而一,以为衰。

〔按:此均输,犹均运也。令户率出车,以行道日数为均,发粟为输。据甲

行道八日,因使八户共出一车;乙行道十日,因使十户共出一车。计其在道,则

皆户一日出一车,故可为均平之率也。

淳风等按:县户有多少之差,行道有远近之异。欲其均等,故各令行道日数

约户为衰。行道多者少其户,行道少者多其户。故各令约户为衰。以八日约除甲

县,得一百二十五,乙、丙各九十五,丁六十一。于今有术,副并为所有率。未

并者各为所求率,以赋粟车数为所有数,而今有之,各得车数。一旬除乙,十三

除丙,各得九十五;二旬除丁,得六十一也。〕

甲衰一百二十五,乙、丙衰各九十五,丁衰六十一,副并为法。以赋粟车数

乘未并者,各自为实。

〔衰,分科率。〕

实如法得一车。

〔各置所当出车,以其行道日数乘之,如户数而一,得率:户用车二日四十

七分日之三十一,故谓之均。求此户以率,当各计车之衰分也。〕

有分者,上下辈之。

〔辈,配也。车、牛、人之数不可分裂,推少就多,均赋之宜。今按:甲分

既少,宜从于乙。满法除之,有余从丙。丁分又少,亦宜就丙。除之适尽。加乙、

丙各一,上下辈益,以少从多也。〕

以二十五斛乘车数,即粟数。

今有均输卒:甲县一千二百人,薄塞;乙县一千五百五十人,行道一日;丙

县一千二百八十人,行道二日;丁县九百九十人,行道三日;戊县一千七百五十

人,行道五日。凡五县赋输卒一月一千二百人。欲以远近、人数多少衰出之,问

县各几何?答曰:甲县二百二十九人。乙县二百八十六人。丙县二百二十八人。

丁县一百七十一人。戊县二百八十六人。

术曰:令县卒各如其居所及行道日数而一,以为衰。

〔按:此亦以日数为均,发卒为输。甲无行道日,但以居所三十日为率。言

欲为均平之率者,当使甲三十人而出一人,乙三十一人而出一人。出一人者,计

役则皆一人一日,是以可为均平之率。〕

甲衰四,乙衰五,丙衰四,丁衰三,戊衰五,副并为法。以人数乘未并者各

自为实。实如法而一。

〔为衰,于今有术,副并为所有率,未并者各为所求率,以赋卒人数为所有

数。此术以别,考则意同,以广异闻,故存之也。各置所当出人数,以其居所及

行道日数乘之,如县人数而一。得率:人役五日七分日之五。〕

有分者,上下辈之。

〔辈,配也。今按:丁分最少,宜就戊除。不从乙者,丁近戊故也。满法除

之,有余从乙。丙分又少,亦就乙除,有余从甲。除之适尽。从甲、丙二分,其

数正等,二者于乙远近皆同,不以甲从乙者,方以下从上也。〕

今有均赋粟:甲县二万五百二十户,粟一斛二十钱,自输其县;乙县一万二

千三百一十二户,粟一斛一十钱,至输所二百里;丙县七千一百八十二户,粟一

斛一十二钱,至输所一百五十里;丁县一万三千三百三十八户,粟一斛一十七钱,

至输所二百五十里;戊县五千一百三十户,粟一斛一十三钱,至输所一百五十里。

凡五县赋输粟一万斛。一车载二十五斛,与僦一里一钱。欲以县户赋粟,令费劳

等,问县各粟几何?答曰:甲县三千五百七十一斛二千八百七十三分斛之五百一

十七。乙县二千三百八十斛二千八百七十三分斛之二千二百六十。丙县一千三百

八十八斛二千八百七十三分斛之二千二百七十六。丁县一千七百一十九斛二千八

百七十三分斛之一千三百一十三。戊县九百三十九斛二千八百七十三分斛之二千

二百五十三。

术曰:以一里僦价乘至输所里,

〔此以出钱为均也。问者曰:“一车载二十五斛,与僦一里一钱。”一钱,

即一里僦价也。以乘里数者,欲知僦一车到输所所用钱也。甲自输其县,则无取

僦价也。〕

以一车二十五斛除之,

〔欲知僦一斛所用钱。〕

加一斛粟价,则致一斛之费。

〔加一斛之价于一斛僦直,即凡输粟取僦钱也:甲一斛之费二十,乙、丙各

十八,丁二十七,戊十九也。〕

各以约其户数,为衰。

〔言使甲二十户共
返回目录 上一页 下一页 回到顶部 0 0
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!