友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
河图小说网 返回本书目录 加入书签 我的书架 我的书签 TXT全本下载 『收藏到我的浏览器』

清史稿-第856部分

快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!

∥ㄒ匝茉ㄕ匠讨澹墒欠匠堂鞫б嗝鳌V菰澹弁ǚ址匠潭哿兄揭粤ν逯值确āMê醮耍蛩脑煽溲臎宥!

又以刘徽、祖冲之之率求弧田,求其密於古率者,撰弧田问率一卷。同里戴煦为之序曰:“古率径一周三,徽率刘徽所定,径五十周一百五十七也。密率乃祖冲之简率,径七周二十二也。诸书弧田术皆用古率,郭太史以二至相距四十八度,求矢亦用古法。顾徽、密二率之周既盈於古,则积亦盈於古,试设同径之圆,旁割四弧,其中两弦相得之方三率皆同,知三率圆积之盈缩,正三率弧积之盈缩也。徽、密二率弧田古无其术,惟四元玉鉴一睹其名,而设问隐晦,莫可端倪。穀堂得其旨,因依李尚之孤矢算术细草设问立术,亦足发前人所未发也。”

又以直横与句股弦和较展转相求,撰直积回求一卷,其自序云:“始戴谔士著句股和较集成,予亦著直积与和较求句股弦之书,然二书为义尚浅,且直积与句弦和求三事,用立方三乘方等,得数不易,而又不足以为率,其书遂不存。近见四元玉鉴直积与和较回求之法,多立二元,尝与谔士思其义蕴,有不必用二元者。盖以句弦较与句弦和相乘为股冪,股弦和与股弦较相乘为句冪,而直积自乘,即句冪股冪相乘也。如以句弦较乘股弦较冪,除直积冪,即为句弦和乘股弦和冪矣。句弦和乘股弦和冪,即弦冪和冪共内少半个黄方冪也。盖相乘冪内去一弦冪,所馀为句股相乘者一,句弦相乘者一,股弦相乘者一,此三冪合成和冪,则少一半黄方冪。半黄方冪,即句弦较股弦较相乘冪也。加一半黄方冪,即为弦冪和冪共矣。加二直积,即二和冪也。减六直积,即二较冪也。又句弦和乘股弦较冪,为句冪内少个句股较乘股弦较冪也。股弦和乘句弦较冪,为股冪内多个句股较乘句弦较冪也。减一句股较乘股弦较冪,尚馀一句股较冪矣。术中精意,皆出於此。其他之参用常法者,可不解而自明耳。草中既未暇论,恐习者不知其理,因揭其大旨於简端,见演段之不可不精也。”

家禾殁后,戴熙搜遗稿,嘱其弟煦校雠而授诸梓。煦精算,见忠义传。著有补重差图说,句股和较集成消法简易图解,对数简法,外切密率,假数测圆,及船机图说等。

吴嘉善,字子登,南丰人。咸丰十一年进士,改翰林院庶吉士,散馆授编修。与徐有壬同治算学。同治改元,避粤匪乱游长沙,识丁取忠。逾年,客广州,因邹伯奇又识钱塘夏鸾翔。三人志同道合,相得益彰。光绪五年,奉使法兰西,驻巴黎。后受代还,旋卒。

所譔算书,首述笔算。次九章翼,曰今有术,曰分法,曰开方,曰平方平员各术。推演方田者,曰立方立员术,推演商功者,曰句股,曰衰分术,曰盈不足术,曰方程术。於句股术后,次附平三角、弧三角测量高远之术。又次则专述天元四元之书,为天元一术释例,为名式释例,为天元一草,为天元问答,为方程天元合释,为四元名式释例并草,为四元浅释。自序曰:“算学至今日,可谓盛矣。古义既彰,新法日出,前此所未有也。余与丁君果臣皆癖此,既忘其癖,更欲以癖导人。尝苦近世津逮初学之书无善本,梅文穆公所删之算法统宗,今亦不传。因商榷述此,取其浅近易晓,以为升高行远之助云。”

罗士琳,字茗香,甘泉人。以监生循例贡太学,尝考取天文生。咸丰元年,恩诏徵举孝廉方正之士,郡县交荐,以老病辞。三年春,粤匪陷扬州,死之,年垂七十矣。少治经,从其舅江都秦太史恩复受举业,已乃弃去,专力步算,博览畴人书,日夕研求数年。

初精西法,自譔言历法者曰宪法一隅。又思句股、少广相表里,而方田与商功无异,差分与均输不殊。按类相从,摘九章中之切于日用者,悉以比例驭之,汇为十二种。以各定率冠首,以借根方继后,以诸乘方开法附末,凡四卷,曰比例汇通,虽悔其少作,实便初学问途。

后见四元玉鉴,服膺叹绝,遂壹意专精四元之术。士琳博文强识,兼综百家,於古今算法尤具神解,以硃氏此书实集算学大成,思通行发明,乃殚精一纪,步为全草,并有原书於率不通及步算传写之譌,悉为标出,补漏正误,反覆设例,申明疑义,推演订证。就原书三卷二十有四门,广为二十四卷,门各补草。

尝为提要钩元之论,谓:“是书通体弗出九章范围,不独商功修筑、句股测望、方程正负已也。如端匹互隐、廪粟回求寓粟布,如意混和寓借衰,茭草形段、果垛叠藏,如像招数寓商功中之差分,直段求源、混积问元、明积演段、拨换截田、锁套吞容寓方田、少广诸法。他若分索隐之为约分命分,方员交错、三率究员、箭积交参之为定率兼交互。至於或问歌彖、杂范类会,以其各自为法,不能比类。故一则寄诸歌词,一则编成杂法,均似补遗。大旨皆以加、减、乘、除、开方、带分六例为问,每门必备此例,略简易而详繁难,尤於自来算书所无者,必设二问以明之。如混积问元中既设种金田及句三股四八角田为问。拨换截田中复设半种金田,锁套吞容中复设方五斜七八角田为问。又果垛叠藏两设员锥垛,杂范类会既设徽率割员,又设密率割员是矣。更有一门专明一义者,如和分索隐之分开方,三率究员两仪合辙之反覆互求是矣。是书但云如积求之,如积有用定率为同数相消者,有如问加减乘除得积为同数相消者。祖序谓:‘平水刘汝谐撰如积释锁,惜今不传。’意者其释此例欤?”

道光中,得硃氏算学启蒙於京师厂肆,士琳复加斠诠刊布之。此书总二十门,凡二百五十九问,其名术义例多与玉鉴相表里。士琳为之互斠,始于天元,终于四元,义主精邃,所得甚深。考大德四年莫若序,计后此书四年。此书首列乘除布算诸例,始于超径等接之术,终于天元如积开方,由浅近以至通变,循序渐进,其理易知。名曰启蒙,实则为玉鉴立术之根,此一证也。玉鉴原本十行,行十九字,“今有”低一格,“术曰”又低二格,与此书同,此二证也。玉鉴斗斛之“斗”别作“”,此假借字,本汉书平帝纪及管子乘马篇,尚杂见于唐以前之孙子、五曹、张丘建诸算经,钧石之“石”,说文本作“柘”,玉鉴作“硕”,“硕”“石”古虽互通,然假“硕”为“石”,则仅见于毛诗甫田疏引汉书食货志,而算书罕见,又玉鉴田之“”,虽见李籍九章音义,为字书所无,此书并同,此三证也。玉鉴虽亦三卷,而门则为二十四,问则二百八十八,较多此书四门二十九问,然以四字分类,其体裁同。且如商功、修筑、方程、正负之属,则又二书互见,此四证也。玉鉴如意混和第一问,据数知一秤为十五斤,適与此书之斤秤起率合,此五证也。玉鉴锁套吞容第九问,方五斜七八角田左右逢元第六、第十三、第二十诸问,有小平小长,皆向无其术。此书卷首明乘除段,即载平除长为小长,长除平为小平之例。其田亩形段第十五问,复载方五斜七八角田求积通术,此六证也。他如玉鉴或问歌彖第四问,与此书盈不足术第七问,又玉鉴果垛叠藏第十四问,与此书堆积还原第十四问,又玉鉴方程正负第四问,与此书方程正负第五问,题皆约略相同,此七证也。知系硃氏原书佚而复出,并其算法一则,亦为附列,间有鱼豕,悉仍其旧,但各标识于误字旁,别记刊误於卷末。

又尝以乾隆间明氏捷法校得八线对数表,一度十三分二十秒正切第五字“0”误“一”;又六度四十一分十秒正切第五字“0”误“六”;又十二度五十分正弦第六字“七”误“五”;又十六度三十二分十秒正切第七字“九”误“0”;又四十二度三十二分四秒正切第九字“五”误“四”。可见西人所能,中人亦能之。

又因会通四元玉鉴如像招数一门,更取明氏捷法,御以天元,知密率亦可招差,其弧与弦矢互求之法,与授时历之垛积招差一一符合。且以祖氏缀术失传,其法廑见於秦书,即大衍之连环求等递减递加,亦与明氏捷法相近。爰融会诸家法意,撰缀术辑补二卷。

又甄录古今畴人,仍阮氏体例为列传,采前传所未收者,得补遗十二人,附见五人,续补二十人,附见七人,合共四十有四人,次於前传四十六卷之后。

集所校著都为观我生室汇十二种。如四元玉鉴细草二十四卷,释例二卷,校正算学启蒙三卷,校正割圜密率捷法四卷,续畴人传六卷,皆别有单行本。

外已刻者尚得七种,曰句股容三事拾遗三卷,附例一卷,本绘亭监副博启法补其遗,取内容方边员径垂线交互相求,一以天元驭之。曰三角和较算例一卷,取斜平三角形中两边夹一角术镕入天元法,用和较推演成式。曰演元九式一卷,括玉鉴中进退消长诸例,借无数之数,以正负开方式入之。曰台锥积演一卷,以玉鉴茭草、果垛二门可补少广之阙,爰取台锥形段引而伸之。曰周无专鼎铭考一卷,以四分周术佐以三统汉术,推得宣王十有六年九月既望甲戌,与铭辞正合。曰弧矢算术补一卷,以元和李四香原术未备,为增补二十七术,合成四十术。曰推算日食增广新术一卷,推广正升斜升横升之算法,以求太阴随地随时之明魄方向分秒,复推其术,以求交食限内之方向,及所经历之诸边分。

馀若春秋朔闰异同考、缀术辑补交食图说举隅、句股截积和较算例、淮南天文训存疑、博能丛话,凡若干卷,未有刻本。其同县友有易之瀚者,亦以算名。

易之瀚,字浩川。知士琳有四元玉鉴补草,因从问难,为撰四元释例一卷。凡开方例二十九则,天元例十一则,四元例十三则。

顾观光,字尚之,金山人。太学生,三试不售,遂无志科举,承世业为医。乡钱氏多藏书,恆假读之。博通经、传、史、子、百家,尤究极天文历算,因端竟委,能抉其所以然,而摘其不尽然。时复蹈瑕抵隙,蒐补其未备。如据周髀“笠以写天,青黄丹黑”之文及后文“凡为此图”云云,而悟篇中周径里数皆为绘图而设。天本浑员,以视法变为平员,则不得不以北极为心,而内外衡以次环之,皆为借象,而非真以平员测天也。

开元占经鲁历积年之算不合,因用演积术,推其上元庚子至开元二年岁积,知占经少三千六十年。又以占经颛顼历岁积考之史记秦始皇本纪,知其术虽起立春,而以小雪距朔之日为断。盖秦以十月为岁首,闰在岁终,故小雪必在十月,昔人未及言也。李尚之用何承天调日法考古历日法朔馀强弱不合者十六家,以为未能推算入微。爰别立术,以日法朔馀展转相减,以得强弱之数。但使日法在百万以上皆可求,惟朔馀过於强率者不可算耳。授时术以平定立三差求太阳盈缩,梅氏详说未明其故。读明志乃知即三色方程之法。谓凡两数升降有差,彼此递减,必得一齐同之数。引而伸之,即诸乘差,则八线、对数、小轮、橢员诸术,皆可共贯。读占经所载瞿昙悉达九执术,知回回、太西历法皆源於此。其所谓高月者即月孛,月藏者即月引数,日藏者即日引数,特称名不同,亦犹回历称岁实为宫日数,朔策为月分日数也。

其论婺源江氏冬至权度,推刘宋大明五年十一月乙酉冬至前以壬戌丁未二日景求太阳实经度,而后求两心差,乃专用壬戌。今用丁未求得两心差,適与江氏古大今小之说相反。盖偏取一端,其根误在高冲行太疾也。西法用实朔距纬求食甚两心实相距,术繁而得数未确。改以前后两设时求食甚实引径得两心实相距,不必更资实朔,较本法为简而密矣。

西人割圜,止知内容各等边之半为正弦,而不知外切各等边之半为正切。乃依六宗、三要、二简诸术,别立求外切各等边之正切法,以补其缺。杜德美求员周术,用员内容六边形起算,巧而降位稍迟,谓内容十等边之一边,即理分中末线之大分,距周较近。且十边形之边与周同数,不过递进一位,而大分与全分相减即得小分,则连比例各率,可以较数取之。入算尤简易,可用弧度入算,不用弧背真数。然犹虑其难记,仍不能无藉於表,因又合两法用之,则术愈简,而弧线、直线相求之理始尽。钱塘项氏割圜捷术,止有弦矢求馀线术,以为可通之割、切二线,因补其术。西人求对数,以正数屡次开方,对数屡次折半,立术繁重。李氏探原以尖锥发其覆,捷矣,而布算术犹繁。且所得者皆前后两数之较,可以造表而不可径求。戴氏简法及西人数学启蒙,又有新术,而未穷其理。乃变通以求二至九之八对数,因任意设数,立六术以御之,得数皆合。复立还原四术,并推衍为和较相求八术,为自来言对数者所未有也。又谓对数之用,莫便于八线,而西人未言其立表之根,因冥思力索,仍用诸乘方差,迎刃而解,尤晚岁造微之诣也。其它凡近时新译西术,如代数、微分、诸重学,皆有所纠正,类此。

所著曰算賸初、续编凡二卷。曰九数存古,依九章分为九卷,而以堆垛、大衍、四元、旁要、重差、夕桀、割圜、弧矢诸术附焉,皆采古书而分门隶之。曰九数外录,则隐括四术为对数、割圜、八线、平三角、弧三角各等面体、员锥三曲线、静重学、动重学、流质重学、天重学,凡记十篇。曰六历通考,则据占经所纪黄帝、颛顼、夏、殷、周、鲁积年而加以考证。曰九执历解,曰回回历解,皆就原法疏通证明之。曰推步简法,曰新历推步简法,曰五星简法,则就原术改度为百分,省迂回而归简易,盖於学实事求是,无门户异同之见,故析理甚精,而谈算为最云。其友人韩应陛,亦以表章算书显。

应陛,字对虞,娄县人。道光二十四年举人,官内阁中书舍人。少好读周、秦诸子,为文古质简奥,非时俗所尚。既而从同里姚椿游,得望溪、惜抱相传古文义法。西人所创点、线、面、体之学,为几何原本,凡十五卷,明万历间利译止前六卷。咸丰初,英人伟烈亚力续译后九卷,海宁李壬叔写而传之。应陛反覆审订,授之剞劂,亚力以为泰西旧本弗及也。外若新译重、气、声、光诸学,应陛推极其致,往往为西人所未及云。

左潜,字壬叔,大学士宗棠从子。补县学生。於诗、古文辞无不深造,尤明算理。长沙丁取忠引为忘年交。早卒,士林惜之。所学自大衍、天元及借根方、比例诸新法,无不贯通。且能自出己意,变其式,勘其误,作为图解,往往突过先民。尝增订徐有壬割圜缀术,既成,忽悟通分捷法析分母、分子为极小数,根同者去之,凡多项通分,顷刻立就。因演数草,为通分捷法一帙。

所譔缀术补草四卷,自序曰:“自泰西杜德美创立割圜九术,以屡乘屡除通方圜之率,我朝明氏、董氏各为之说,而杜书之义,推阐靡遗。顾八线互求,尚无通术,未足以尽一圜之变,非明氏、董氏之智力,不能因法立以尽其变也。其能穷杜氏之义也,资於借根方;其不能广杜氏之法也,亦限於借根方。盖借根方即天元一之变术,究不如元术之巧变莫测也。是书祖杜宗明,又旁参以董氏之法,八线相求,各立一式,因式立法,因法入算。乡之不可立算者,今皆能驭之以法,即有不能立法布算者,而其式存,则能济法之穷;而度圜诸线,一以贯之矣。推其立式之
返回目录 上一页 下一页 回到顶部 1 2
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!